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Depth to the water table
often exceeds 100 ft /30 m
in drylands

This very deep unsaturated
zone means dryland plants are
not accessing groundwater

Dryland plants depend on soil
moisture provided by precipitation



Therefore, compared to other areas which receiver
greater annual precipitation, drylands are highly
sensitive to precipitation inputs
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Fay, PA., 2009 in New Phytologist and Huxman et al. 2004 in Nature.



NOAA/NCDC™

I [ [ [ [ [ [ [ [T

Percent Change

<-40-35 -30 -26 -20 15 -10 -5 O 5 10 15 20 25 30 35 >40

While U.S. annual average precipitation has increased about 5 percent over the past 50
years, there have been important regional differences as shown above.



Annual precipitation has been decreasing at
the SRER-SRC over the past ~ 30 years
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“Long-Term Precipitation Trends of Two Uniquely Water-Limited Ecosystems:
Implications for Future Soil Moisture Dynamics” — Wehr and Papuga in prep



Precipitation at SRER-SRC is bimodal

Surface soil moisture responds to all
storms, but deep soil moisture only
available after large storms.
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Most storms are small, with larger storms
mostly occurring in the summer
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Surface moisture is lost quickly, whereas deep
moisture remains available in the soil for longer
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Climate Change: Precipitation

Less small storms, more large storms
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(\’)'\ Predicting the response of our

L\/,\) ecosystems to changes in
/1] : ) )
climate is one of today’s

/ greatest challenges

Predicting how changes in our
ecosystems affect the climate
system is another of our
greatest challenges
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Work from my research group has shown:

* Transpiration in dryland ecosystems (grassland and
shrubland) is triggered by deep soil moisture
[Kurc and Small 2007, Cavanaugh et al 2011]

e Carbon uptake in dryland ecosystems (grassland and
shrubland) is triggered by deep soil moisture
[Kurc and Small 2007, Kurc and Benton 2010]



Walter’s Two-Layer Hypothesis

A root-based niche-partitioning hypothesis of tree-grass
coexistence positing that shallow rooted grasses exploit soil

moisture in shallow layers while deep rooted trees have
exclusive access to soil moisture in deep layers

N\

http://gerrymarten.com/human-ecology/chaptero6.html



Hydrologically-Defined Two-Layer Framework




Stable Water Isotopes In Two-Layer Framework

We hypothesized that the shallow and deep soil layers are
isotopically distinct —through precipitation and evaporation

Evaporation
further enriches

AN Oater Values in
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Stable Water Isotopes In Two-Layer Framework

We further hypothesized that we could identify the source
water for plants because the layers were isotopically distinct.

Shallow soil

moisture Plant water
use

Deep soil
moisture




Methods

* Micrometeorological and Eddy Measurements
— Evapotranspiration, Precipitation

* Soil Moisture Measurements

— Multiple Depths Averaged to Shallow and Deep

Sap Flow System

— Transpiration

* Isotopic Field Campaign (2014&2015)
— Soil, Plant, and Precipitation Samples
— Lab Analyzed with Picarro Induction Module &




Stable Water Isotopes In Two-Layer Framework

Are shallow and deep soil layers are isotopically distinct?
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Stable Water Isotopes In Two-Layer Framework

Are trends in shallow or deep moisture expressed in the plants?
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We can see water from these isotopically light storms
moving through the soil and being taken up by plants




Stable Water Isotopes In Two-Layer Framework

Are trends in shallow or deep moisture expressed in the plants?
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Predicting how changes in our
ecosystems affect the climate
system is another of our

greatest challenges

Desert shrublands depend on
rainfall events capable of wetting
the deep soil layers suggesting they
can handle less overall precipitation as
long as there are still big events

Predicting the response of
our ecosystems to changes in
climate is one of today’s
greatest challenges



Albedo in Two-Layer Framework
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Albedo in Two-Layer Framework

02 e Moisture decreases the
0195 | albedo of the ecosystem.
019 | Nl
o1es | IBOO¢ e Deep moisture influences

018 ||

albedo regardless if moisture
is present at the surface

Case 2

Case 3 . Case 4

Sanchez-Mejia, Z.M. and S.A. Papuga, Water Resources Research, 2014



Albedo in Two-Layer Framework
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e PBL height lowest under wet conditions
when albedo is also lowest

e Deep moisture influences PBL height
regardless if there is moisture at the surface

Sanchez-Mejia, Z.M. and S.A. Papuga, Water Resources Research, 2014



Deep moisture influence on albedo

e shrub “greenness” controlled
by deep soil moisture

e wet “green” canopies are
darker and less reflective

O O

Kurc and Benton (2010)
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Sanchez-Mejia, Z.M., S.A. Papuga, et al., Water Resources Research, 2014



Deep moisture influence on albedo
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Sanchez-Mejia, Z.M., S.A. Papuga, et al., Water Resources Research, 2014



Deep moisture influence on albedo

0.25 0.25
o 02 g 02
D 2
£ 0.15 < 0.15
0 z
Z 0. 2 0l
- O

0.05 | 0.05

S
O

e Canopy albedo is always lower than bare albedo
e A “wet” surface, whether soil or vegetation, always has the lowest albedo

Sanchez-Mejia, Z.M., S.A. Papuga, et al., Water Resources Research, 2014



Now we ask...

Can we use empirical relationships between soil
moisture, albedo, and planetary boundary layer
height to evaluate consequences of future
precipitation changes?

Sanchez-Mejia, Z.M. and S.A. Papuga in prep for Journal of Hydrometeorology



SO we propose...

A simple modeling approach:
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Sanchez-Mejia, Z.M. and S.A. Papuga in prep for Journal of Hydrometeorology



Results from our empirical model:

Current regime: Rains ~ every 3 days in summer, 6 days in winter Annual values:
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Results from our empirical model:

Example New regime: Decrease in Overall Precip, Increase in Frequency
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Sanchez-Mejia, Z.M. and S.A. Papuga in prep for Journal of Hydrometeorology
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Predicting the response of
our ecosystems to changes in
climate is one of today’s
greatest challenges

Predicting how changes in our
ecosystems affect the climate
system is another of our
greatest challenges

Greening in shrublands leads to decreased albedo and
lower boundary layer potentially generating better
conditions for rainfall

[Sanchez-Mejia and Papuga 2014; Sanchez —Mejia et al. 2014]
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